Компоненты активные и пассивные электронные. Виды электронных компонентов Компоненты радиоэлектроники

С чего начинается практическая электроника? Конечно с радиодеталей! Их разнообразие просто поражает. Здесь вы найдёте статьи о всевозможных радиодеталях, познакомитесь с их назначением, параметрами и свойствами. Узнаете, где и в каких устройствах применяются те или иные электронные компоненты.

Для перехода на интересующую статью кликните ссылку или миниатюрную картинку, размещённую рядом с кратким описанием материала.

Как купить радиодетали через интернет? Этим вопросом задаются многие радиолюбители. В статье рассказывается о том, как можно заказать радиодетали в интернет-магазине радиодеталей с доставкой по почте.

В данной статье я расскажу о том, как покупать радиодетали и электронные модули в одном из крупнейших интернет-магазинов AliExpress.com за весьма небольшие деньги:)

Кроме широко распространённых плоских SMD-резисторов в электронике применяются MELF-резисторы в корпусе цилиндрической формы. Каковы их достоинства и недостатки? Где они применяются и как определить их мощность?

Размеры корпусов SMD-резисторов стандартизированы, и многим они, наверняка, известны. Но так ли всё просто? Здесь вы узнаете о двух системах кодирования размеров SMD-компонентов, научитесь определять реальный размер чип-резистора по его типоразмеру и наоборот. Познакомитесь с самыми маленькими представителями SMD-резисторов, которые сейчас существуют. Кроме этого представлена таблица типоразмеров SMD-резисторов и их сборок.

Здесь вы узнаете, что такое температурный коэффициент сопротивления резистора (ТКС), а также каким ТКС обладают разные типы постоянных резисторов. Приводится формула расчёта ТКС, а также пояснения насчёт зарубежных обозначений вроде T.C.R и ppm/ 0 С.

Кроме постоянных резисторов в электронике активно применяются переменные и подстроечные резисторы. О том, как устроены переменные и подстроечные резисторы, об их разновидностях и пойдёт речь в предлагаемой статье. Материал подкреплён большим количеством фотографий разнообразных резисторов, что непременно понравится начинающим радиолюбителям, которые смогут легче ориентироваться во всём многообразии этих элементов.

Как и у любой радиодетали, у переменных и подстроечных резисторов есть основные параметры. Оказывается их не так уж и мало, а начинающим радиолюбителям не помешает ознакомиться с такими интересными параметрами переменных резисторов, как ТКС, функциональная характеристика, износоустойчивость и др.

Полупроводниковый диод – один из самых востребованных и распространённых компонентов в электронике. Какими параметрами обладает диод? Где он применяется? Каковы его разновидности? Об этом и пойдёт речь в этой статье.

Что такое катушка индуктивности и зачем она используется в электронике? Здесь вы узнаете не только о том, какими параметрами обладает катушка индуктивности, но и узнаете, как обозначаются разные катушки индуктивности на схеме. Статья содержит множество фотографий и изображений.

В современной импульсной технике активно применяется диод Шоттки. Чем он отличается от обычных выпрямительных диодов? Как он обозначается на схемах? Каковы его положительные и отрицательные свойства? Обо всём этом вы узнаете в статье про диод Шоттки.

Стабилитрон – один из самых важных элементов в современной электронике. Не секрет, что полупроводниковая электроника очень требовательна к качеству электропитания, а если быть точнее, к стабильности питающего напряжения. Тут на помощь приходит полупроводниковый диод – стабилитрон, который активно применяется для стабилизации напряжения в узлах электронной аппаратуры.

Что такое варикап и где он применяется? Из этой статьи вы узнаете об удивительном диоде, который используется в качестве переменного конденсатора.

Если вы занимаетесь электроникой, то наверняка сталкивались с задачей соединения нескольких динамиков или акустических колонок. Это может потребоваться, например, при самостоятельной сборке акустической колонки, подключении нескольких колонок к одноканальному усилителю и так далее. Рассмотрено 5 наглядных примеров. Много фото.

Транзистор является основой современной электроники. Его изобретение произвело революцию в радиотехнике и послужило основой для миниатюризации электроники – создания микросхем. Как обозначается транзистор на принципиальной схеме? Как необходимо впаивать транзистор в печатную плату? Ответы на эти вопросы вы найдёте в этой статье.

Составной транзистор или по-другому транзистор Дарлингтона является одной из модификаций биполярного транзистора. О том, где применяются составные транзисторы, об их особенностях и отличительных свойствах вы узнаете из этой статьи.

При подборе аналогов полевых МДП-транзисторов приходиться обращаться к технической документации с параметрами и характеристиками конкретного транзистора. Из данной статьи вы узнаете об основных параметрах мощных MOSFET транзисторов.

В настоящее время в электронике всё активнее применяются полевые транзисторы. На принципиальных схемах полевой транзистор обозначается по-разному. В статье рассказывается об условном графическом обозначении полевых транзисторов на принципиальных схемах.

Что такое IGBT-транзистор? Где применяется и как он устроен? Из данной статьи вы узнаете о преимуществах биполярных транзисторов с изолированным затвором, а также о том, как обозначается данный тип транзисторов на принципиальных схемах.

Среди огромного количества полупроводниковых приборов существует динистор. Узнать о том, чем динистор отличается от полупроводникового диода, вы сможете, прочитав эту статью.

Что такое супрессор? Защитные диоды или супрессоры всё активней применяются в радиоэлектронной аппаратуре для её защиты от высоковольтных импульсных помех. О назначении, параметрах и способах применения защитных диодов вы узнаете из этой статьи.

Самовосстанавливающиеся предохранители всё чаще применяются в электронной аппаратуре. Их можно обнаружить в приборах охранной автоматики, компьютерах, портативных устройствах… На зарубежный манер самовосстанавливающиеся предохранители называются PTC Resettable Fuses. Каковы свойства и параметры «бессмертного» предохранителя? Об этом вы узнаете из предложенной статьи.

В настоящее время в электронике всё активней стали применяться твёрдотельные реле. В чём преимущество твёрдотельных реле перед электромагнитными и герконовыми реле? Устройство, особенности и типы твёрдотельных реле.

В литературе посвящённой электронике кварцевый резонатор незаслуженно лишён внимания, хотя данный электромеханический компонент чрезвычайно сильно повлиял на активное развитие техники радиосвязи, навигации и вычислительных систем.

Кроме всем известных алюминиевых электролитических конденсаторов в электронике используется большое количество всевозможных электролитических конденсаторов с разным типом диэлектрика. Среди них например танталовые smd конденсаторы, неполярные электролитические и танталовые выводные. Данная статья поможет начинающим радиолюбителям распознать различные электролитические конденсаторы среди всевозможных радиоэлементов.

Наряду с другими конденсаторами, электролитические конденсаторы обладают некоторыми специфическими свойствами, которые необходимо учитывать при их применении в самодельных электронных устройствах, а также при проведении ремонта электроники.

Раздел 6

Раздел 5

Цифровая интегральная микросхема (цифровая микросхема) - это интегральная микросхема, предназначенная для преобразования и обработки сигналов, изменяющихся по закону дискретной функции.

Цифровая интегральная микросхема - ИМС, предназначенная для преобразования и обработки сигналов, изменяющихся по закону дискретной функции. Одним из видов цифровых ИМС является логическая ИМС. [1 ]

2 ]

Цифровая интегральная микросхема - микросхема, предназначенная для преобразования и обработки сигналов, изменяющихся но закону дискретной функции. [4 ]

Цифровая интегральная микросхема - микросхема, предназначенная для преобразования и обработки сигналов, изменяющихся по закону дискретной функции. [5 ]

Цифровая интегральная микросхема (цифровая микросхема) - это интегральная микросхема, предназначенная для преобразования и обработки сигналов, изменяющихся по закону дискретной функции. [6 ]

Нацифровых интегральных микросхемах выполнены устройства и системы обработки больших потоков цифровой информации - системы автоматического регулирования, ЭВМ большой и малой производительности, а также микроЭВМ, предназначенные, как правило, для узкого применения. [7 ]

Вцифровых интегральных микросхемах активные элементы работают в ключевом режиме. Их применяют главным образом в вычислительных машинах. [8 ]

Основной характеристикойцифровых интегральных микросхем, широко применяемых в ЭВМ, является время задержки сигнала т при переключении из состояния 1 в О и обратно. Исследования показывают, что для данного уровня технологии производства микросхем с достаточной точностью считаем Pr const. [9 ]

В серияхцифровых интегральных микросхем имеются АЛУ, построенные по принципу разрядного слоя. Они допускают соединение друг с другом для получения АЛУ требуемой разрядности. [10 ]

В основецифровых интегральных микросхем лежат транзисторные ключи, способные находиться в двух устойчивых состояниях: открытом и закрытом. Использование транзисторных ключей дает возможность создавать различные логические, триггер-ные и другие интегральные микросхемы. [11 ]

Книга посвященацифровым интегральным микросхемам, применяемым в информационно-измерительной технике. Рассмотрены элементная база, функциональные особенности и способы включения микросхем малого и среднего уровней интеграции. Материал изложен применительно к устройствам ТТЛ (ТТЛШ), КМОП-структуры и отчасти ДТЛ. Изложение сопровождается примерами практического использования цифровых микросхем. [12 ]


Наличие такого многообразияцифровых интегральных микросхем позволяет создать надежные и компактные устройства телемеханики нового поколения; конкретные примеры создания узлов на базе интегральных схем будут рассмотрены в других главах. [13 ]

Наиболее часто вцифровых интегральных микросхемах, а также в импульсных устройствах применяют триггеры с единственным входом данных D (data), так называемые D-триггеры. [1 ]

При конструировании устройств нацифровых интегральных микросхемах типа ДТЛ (диодно-транзисторные логические схемы) или ТТЛ (транзисторно-транзисторные логические схемы) целесообразно осуществлять контроль напряжений на входах и выходах. Для этой цели могут использоваться испытательные приборы, которые светом лампочек или светодиодов реагируют на работу логических схем. [2 ]

Быстрое развитие мироэлектроники как одной из самых обширных областей промышленности обусловлено следующими факторами:

1) Надежность - комплексное свойство, которое в зависимости от на­значения изделия и условий его эксплуатации может включать безотказность, долговечность, ремонтопригодность и сохраняемость в отдельности или определенное сочетание этих свойств как изделий в целом так и его частей. Надежность работы ИМС обусловлена монолитностью их структуры, а также защищенностью интегральных структур от внешних воздействий с помощью герметичных корпусов, в которых, как правило, выпускаются серийные ИМС.

2) Снижение габаритов и массы. Значительное уменьшение массы и размеров конкретных радиоэлектронных приборов без потери качества работы также является одним из решающих факторов при выборе ИМС при разработке различных приборов и узлов радиоэлектронной аппаратуры.

Элементы функциональной электроники
Оптопары и оптоэлектронные микросхемы
Основные понятия и определения
Оптрон – оптоэлектронный прибор, в котором в едином конструктиве выполнены источник излучения, приемник излучения, оптический канал связи между источником и приемником. Принцип действия оптронов основан на преобразовании электрической энергии в световую, передаче световой энергии по каналу связи, и преобразовании световой энергии в электрическую.

Оптоэлектронная интегральная схема – микросхема, состоящая из одной или нескольких оптопар и согласующих или усилительных каскадов.

Как правило, любое электронное функциональное устройство состоит из отдельных элементов, скреплённых между собой согласно принципиальной схеме. Выбор элементов и их тип зависит от назначения устройства, среды использования, а так же от сложности исполнения.

Электронные компоненты, применяемые в каком либо устройстве, выполненные в заводских условиях имеют законченный вид и форму в соответствии с техническими условиями. Элементы электроники, используемые для конструирования, производства и ремонта электронной аппаратуры, делятся на группы: резисторы, диоды, конденсаторы, транзисторы и прочие.

Компоненты электронных схем, применяемые при изготовлении ламповых усилителей звуковых частот.

Электронные компоненты – это производственно-исполненные по специальным технологическим процессам, законченные технические изделия с ограниченным регламентированным функционалом, входящие в состав электронных и радиотехнических устройств и, определяющие заданные свойства и характеристики, частей электронных схем этих устройств.
В начале прошлого века, с бурным развитием радиоприемной и радиопередающей техники, за электронными компонентами прочно закрепилось народное название - радиодетали . На появление названия повлияло то, что в начале 20-го века первым технически сложным электронным устройством, стало радио. Изначально термин радиодетали означал электронные компоненты, применяемые для производства радиоприёмников, затем это название распространилось и на остальные электронные компоненты, не имеющие прямой связи с радиоустройствами. В документах этого сайта, Вы найдете описание, только тех электронных компонентов, которые как правило, применяются в усилителях низкой частоты.
Все электронные компоненты подразделяются на активные и пассивные .
Пассивные электронные компоненты , в пределах своих технических характеристик, изменяют свои параметры только по линейным математическим соотношениям и зависимостям (имеется ввиду вольт – амперная характеристика, показывающая зависимость постоянного тока от постоянного приложенного напряжения). К пассивным электронным компонентам относятся: - резисторы; - конденсаторы; - предохранители; - соединительные проводники; -дроссели; - трансформаторы; - динамические излучающие головки; - пъезоэлементы; - переключатели; - сигнальные лампочки накаливания.

Резистор один из основных компонентов электронных счем. В ламповых усилителях резисторы выполняют роль анодной или катодной нагрузки, в зависимости от типа каскада усиления. На резисторах строятся цепочки делителей напряжения, для обеспечения правильных режимов работы лампы. Резисторы, используются для понижения напряжения и тока в цепях обратной связи ламповых усилителей и в частотно - зависимых цепях регулировки тембра. Основным условием снижения до минимума собственных тепловых шумов резисторов, является использование резисторов, превышающих допустимую расчетную мощность в два или три раза.

Конденсаторы незаменимы при создании фильтров питания, стабилизаторов напряжения и других питаюших устройств высококачественной звукотехники. Основное предназначение конденсатора в ламповом усилителе, выполнять функцию передачи переменного звукового напряжения от анода лампы предыдущего каскада к управляющей сетке последующего и при этом, изолировать управляющую сетку от воздействия высокого анодного напряжения. Конечно было бы на много лучше если бы этих переходных конденсаторов не было бы вообще, а связь анода с сеткой следующего каскада была бы непосредственной. Такие схемы существуют но при создании многокаскадных схем с непосредственной связью, системы питания сильно удорожают общее устройство.

Название дроссель, происходит от немецкого термина Drossel. Дроссель это электротехническое изделие, обладающее собственной индуктивностью и малым собственным сопротивлением. Эти его свойства, позволяют использовать дроссель в цепях смешанного с постоянным, переменного и импульсного тока, как высокое реактивное сопротивление переменному току и одновременно очень низкое сопротивление постоянному току. При прохождении по цепи дросселя переменного тока в обмотке возникает ЭДС самоиндукции направленная противофазно переменному току её вызывающему. За счет этих свойств дроссель уверенно занял своё место в качестве элемента фильтра в системах питания ламповых усилителей.

Трансформатор - это технологически законченное электромагнитное изделие, предназначенное для преобразования параметров переменного тока одного напряжения в переменный ток другого напряжения при неизменной частоте. Действие трансформатора основано на использовании явления электромагнитной индукции. В схемах ламповых усилителей звуковой частоты, трансформаторы чаще всего, используются в блоках питания (силовые и накальные), а также в выходных каскадах мощности (выходные). Реже трансформаторы используются как входные и межкаскадные. К трансформаторам, которые непосредственно используются в звуковых цепях лампового усилителя, предъявляются повышенные требования к качеству исполнения. В усилителях звуковых частот, выполненных на лампах, применяются трансформаторы из наборных пакетов пластин, трансформаторы с сердечниками из витого ленточного железа и торроидальные трансформаторы.

Активные электронные компоненты , в пределах своих технических характеристик, изменяют свои параметры по нелинейным математическим соотношениям и зависимостям. К активным электронным компонентам относятся: - вакуумные электронные лампы; - газонаполненные ионные лампы; - полупроводниковые выпрямительные диоды; - полупроводниковые выпрямительные мосты; - полупроводниковые стабилитроны и стабисторы; - полупроводниковые тиристоры; - полупроводниковые транзисторы; - полупроводниковые фотоэлементы.

Необычайное разнообразие электронных ламп, как электровакуумных приборов, делает невозможным проведение классификации и анализа всей этой продукции, с единых позиций. Нет, пожалуй, ни одного показателя, который оказался бы присущ всем без исключения лампам. Вроде бы, само определение электровакуумного прибора подразумевает обязательный вакуум внутри колбы. Однако существует многочисленная группа газонаполненных ламп, которые по официальной классификации также отнесены к электровакуумным приборам.
Поэтому в мировой практике давно сложилась традиция относить радиолампы к определенной группе по какому-либо одному или нескольким признакам. Так, к примеру, можно выделить группу ламп, предназначенных для работы в СВЧ-диапазоне или группу ламп, предназначенных для воспроизведения цветных изображений (кинескопы). А можно объединить в одну группу самые различные лампы с одинаковой формой (или материалом) баллона. В то же время все эти очень разные лампы можно отнести к одной группе ламп с косвенным подогревом катода.

Радиоэлементы (радиодетали) – это электронные компоненты, собранные в составные части цифрового и аналогового оборудования. Радиодетали нашли свое применения в видеотехнике, звуковых устройствах, смартфонах и телефонах, телевизорах и измерительных приборах, компьютерах и ноутбуках, оргтехнике и прочей технике.

Виды радиоэлементов

Радиоэлементы, соединенные посредством проводниковых элементов, в совокупности образуют электросхему, которая еще может носить название «функциональный узел». Совокупность электроцепей из радиоэлементов, которые расположены в отдельном общем корпусе, называется микросхемой – радиоэлектронной сборкой, она может выполнять множество разных функций.

Все электронные компоненты, использующиеся в бытовой и цифровой технике, относятся к радиодеталям. Перечислить все подвиды и виды радиодеталей довольно проблематично, так как получится огромный список, который постоянно расширяется.

Для обозначения радиодеталей на схемах применяют как графические условные обозначения (УГО), так и буквенно-цифровые символы.

По методу действия в электрической цепи их можно разделить на два типа:

  1. Активные;
  2. Пассивные.

Активный тип

Активные электронные компоненты полностью зависят от внешних факторов, при воздействии которых меняют свои параметры. Именно такая группа привносит в электроцепь энергию.

Выделяют следующих основных представителей этого класса:

  1. Транзисторы – это триод-полупроводник, который посредством входного сигнала может контролировать и управлять электронапряжением в цепи. До появления транзисторов их функцию выполняли электронные лампы, которые потребляли больше электроэнергии и были некомпактными;
  2. Диодные элементы – полупроводники, проводящие электроток только в единственном направлении. Имеют в своем составе один электрический переход и два вывода, производятся из кремния. В свою очередь, диоды делятся по диапазону частот, конструкции, назначению, габаритам переходов;
  3. Микросхемы – составные компоненты, в которых произведена интеграция конденсаторов, резисторов, диодных элементов, транзисторов и прочего в полупроводниковую подложку. Они предназначаются для преобразования электрических импульсов и сигналов в цифровую, аналоговую и аналогово-цифровую информацию. Могут производиться без корпуса или в нем.

Существует еще множество представителей данного класса, однако используются они реже.

Пассивный тип

Пассивные электронные компоненты не зависят от протекающего электротока, напряжения и прочих внешних факторов. Они могут или потреблять, или аккумулировать энергию в электроцепи.

В этой группе можно выделить следующие радиоэлементы:

  1. Резисторы – устройства, которые занимаются перераспределением электротока между составными элементами микросхемы. Классифицируются по технологии изготовления, методу монтажа и защиты, назначению, вольт-амперной характеристике, характеру изменения сопротивления;
  2. Трансформаторы – электромагнитные приспособления, служат для преобразования с сохранением частоты одной системы электротока переменного типа в другую. Состоит такая радиодеталь из нескольких (или одной) проволочных катушек, охваченных магнитным потоком. Трансформаторы могут быть согласующие, силовые, импульсные, разделительные, а также устройства тока и напряжения;
  3. Конденсаторы – элемент, служащий для аккумулирования электротока и последующего его высвобождения. Состоят из нескольких разделенных диэлектрическими элементами электродов. Конденсаторы классифицируются по виду диэлектрических компонентов: жидкие, твердые органические и неорганические, газообразные;
  4. Индуктивные катушки – устройства из проводника, которые служат для ограничения электротока переменного типа, подавления помех и накопления электроэнергии. Проводник помещен под изоляционный слой.

Маркировка радиодеталей

Маркировка радиодеталей обычно совершается производителем и находится на корпусе изделия. Маркирование подобных элементов может быть:

  • символьным;
  • цветовым;
  • символьным и цветовым одновременно.

Важно! Маркирование импортных радиодеталей может существенно отличаться от маркировки однотипных элементов отечественного производства.

На заметку. Каждый радиолюбитель при попытках расшифровать тот или иной радиокомпонент прибегает к справочнику, так как сделать это по памяти не всегда получается из-за огромного модельного разнообразия.

Обозначение радиоэлементов (маркировка) европейских изготовителей часто происходит по определенной буквенно-цифровой системе, состоящей из пяти символов (три цифры и две буквы – для изделий широкого применения, две цифры и три буквы – для спецаппаратуры). Цифры в такой системе определяют технические параметры детали.

Европейская система маркировки полупроводников широкого распространения

1-ая буква – кодировка материала
A Основной компонент – германий
B Кремний
C Соединение галлия и мышьяка – арсенид галлия
R Сульфид кадмия
2-ая литера – вид изделия или его описание
A Диодный элемент малой мощности
B Варикап
C Транзистор малой мощности, работающий на низких частотах
D Мощный транзистор, функционирующий на низких частотах
E Туннельный диодный компонент
F Высокочастотный транзистор малой мощности
G Более одного прибора в едином корпусе
H Магнитный диод
L Мощный транзистор, работающий на высокой частоте
M Датчик Холла
P Фототранзистор
Q Световой диод
R Переключающийся прибор малой мощности
S Переключательный транзистор маломощный
T Мощное переключающееся устройство
U Транзистор переключательный мощный
X Умножительный диодный элемент
Y Выпрямительный диодный элемент высокой мощности
Z Стабилитрон

Обозначение радиодеталей на электросхемах

Из-за того, что существует огромное множество различных радиоэлектронных компонентов, были приняты на законодательном уровне нормы и правила их графического обозначения на микросхеме. Эти нормативные акты называются ГОСТами, где прописана исчерпывающая информация по виду и размерным параметрам графического изображения и дополнительным символьным уточнениям.

Важно! Если радиолюбитель составляет схему для себя, то ГОСТами можно пренебречь. Однако если составляемая электросхема будет подаваться на экспертизу или проверку в различные комиссии и госорганы, то рекомендуется сверить все со свежими ГОСТами – они постоянно дополняются и изменяются.

Обозначение радиодеталей типа «резистор», находящееся на плате, на чертеже выглядит прямоугольником, рядом с ним с литерой «R» и цифрой – порядковым номером. Например, «R20» обозначает, что резистор на схеме 20-ый по счету. Внутри прямоугольника может прописываться его рабочая мощность, которую он может долгое время рассеивать, не разрушаясь. Ток, проходя через этот элемент, рассеивает конкретную мощность, тем самым нагревает его. Если мощность будет больше номинальной, то радиоизделие выйдет из строя.

Каждый элемент, подобно резистору, имеет свои требования к начертанию на чертеже цепи, условным буквенным и цифровым обозначениям. Для поиска таких правил можно использовать разнообразную литературу, справочники и многочисленные ресурсы интернета.

Любой радиолюбитель должен понимать виды радиодеталей, их маркировку и условно графическое обозначение, так как именно такие знания помогут ему правильно составить или прочесть существующую схему.

Видео

Содержание:

Начинающие радиолюбители нередко сталкиваются с такой проблемой, как обозначение на схемах радиодеталей и правильное прочтение их маркировки. Основная трудность заключается в большом количестве наименований элементов, которые представлены транзисторами, резисторами, конденсаторами, диодами и другими деталями. От того, насколько правильно прочитана схема, во многом зависит ее практическое воплощение и нормальная работа готового изделия.

Резисторы

К резисторам относятся радиодетали, обладающие строго определенным сопротивление протекающему через них электрическому току. Данная функция предназначена для понижения тока в цепи. Например, чтобы лампа светила менее ярко, питание на нее подается через резистор. Чем выше сопротивление резистора, тем меньше будет свечение лампы. У постоянных резисторов сопротивление остается неизменным, а переменные резисторы могут изменять свое сопротивление от нулевого значения до максимально возможной величины.

Каждый постоянный резистор обладает двумя основными параметрами - мощностью и сопротивлением. Значение мощности указывается на схеме не буквенными или цифровыми символами, а с помощью специальных линий. Сама мощность определяется по формуле: P = U x I, то есть равна произведению напряжения и силы тока. Данный параметр имеет важное значение, поскольку тот или иной резистор может выдержать лишь определенное значение мощности. Если это значение будет превышено, элемент просто сгорит, так как во время прохождения тока по сопротивлению происходит выделение тепла. Поэтому на рисунке каждые линии, нанесенные на резистор, соответствуют определенной мощности.

Существуют и другие способы обозначения резисторов на схемах:

  1. На принципиальных схемах обозначается порядковый номер в соответствии с расположением (R1) и значение сопротивления, равное 12К. Буква «К» является кратной приставкой и обозначает 1000. То есть, 12К соответствует 12000 Ом или 12 килоом. Если в маркировке присутствует буква «М», это указывает на 12000000 Ом или 12 мегаом.
  2. В маркировке с помощью букв и цифр, буквенные символы Е, К и М соответствуют определенным кратным приставкам. Так буква Е = 1, К = 1000, М = 1000000. Расшифровка обозначений будет выглядеть следующим образом: 15Е - 15 Ом; К15 - 0,15 Ом - 150 Ом; 1К5 - 1,5 кОм; 15К - 15 кОм; М15 - 0,15М - 150 кОм; 1М2 - 1,5 мОм; 15М - 15мОм.
  3. В данном случае используются только цифровые обозначения. Каждое включает в себя три цифры. Первые две из них соответствуют значению, а третья - множителю. Таким образом, к множителям относятся: 0, 1, 2, 3 и 4. Они означают количество нулей, добавляемых к основному значению. Например, 150 - 15 Ом; 151 - 150 Ом; 152 - 1500 Ом; 153 - 15000 Ом; 154 - 120000 Ом.

Постоянные резисторы

Название постоянных резисторов связано с их номинальным сопротивлением, которое остается неизменным в течение всего периода эксплуатации. Они различаются между собой в зависимости от конструкции и материалов.

Проволочные элементы состоят из металлических проводов. В некоторых случаях могут использоваться сплавы с высоким удельным сопротивлением. Основой для намотки проволоки служит керамический каркас. Данные резисторы обладают высокой точностью номинала, а серьезным недостатком считается наличие большой собственной индуктивности. При изготовлении пленочных металлических резисторов, на керамическое основание напыляется металл, обладающий высоким удельным сопротивлением. Благодаря своим качествам, такие элементы получили наиболее широкое распространение.

Конструкция угольных постоянных резисторов может быть пленочной или объемной. В данном случае используются качества графита, как материала с высоким удельным сопротивлением. Существуют и другие резисторы, например, интегральные. Они применяются в специфических интегральных схемах, где использование других элементов не представляется возможным.

Переменные резисторы

Начинающие радиолюбители нередко путают переменный резистор с конденсатором переменной емкости, поскольку внешне они очень похожи друг на друга. Тем не менее, у них совершенно разные функции, а также имеются существенные отличия в отображении на принципиальных схемах.

В конструкцию переменного резистора входит ползунок, вращающийся по резистивной поверхности. Его основной функцией является подстройка параметров, заключающаяся в изменении внутреннего сопротивления до нужного значения. На этом принципе основана работа регулятора звука в аудиотехнике и других аналогичных устройствах. Все регулировки осуществляются за счет плавного изменения напряжения и тока в электронных устройствах.

Основным параметром переменного резистора является сопротивление, способное изменяться в определенных пределах. Кроме того, он обладает установленной мощностью, которую должен выдерживать. Этими качествами обладают все типы резисторов.

На отечественных принципиальных схемах элементы переменного типа обозначаются в виде прямоугольника, на котором отмечены два основных и один дополнительный вывод, располагающийся вертикально или проходящих сквозь значок по диагонали.

На зарубежных схемах прямоугольник заменен изогнутой линией с обозначением дополнительного вывода. Рядом с обозначением ставится английская буква R с порядковым номером того или иного элемента. Рядом проставляется значение номинального сопротивления.

Соединение резисторов

В электронике и электротехнике довольно часто используются соединения резисторов в различных комбинациях и конфигурациях. Для большей наглядности следует рассматривать отдельный участок цепи с последовательным, параллельным и .

При последовательном соединении конец одного резистора соединяется с началом следующего элемента. Таким образом, все резисторы подключаются друг за другом, и по ним протекает общий ток одинакового значения. Между начальной и конечной точкой существует только один путь для протекания тока. С возрастанием количества резисторов, соединенных в общую цепь, происходит соответствующий рост общего сопротивления.

Параллельным считается такое соединение, когда начальные концы всех резисторов объединяются в одной точке, а конечные выходы - в другой точке. Течение тока происходит по каждому, отдельно взятому резистору. В результате параллельного соединения с увеличением числа подключенных резисторов, возрастает и количество путей для протекания тока. Общее сопротивление на таком участке уменьшается пропорционально количеству подключенных резисторов. Оно всегда будет меньше, чем сопротивление любого резистора, подключенного параллельно.

Чаще всего в радиоэлектронике используется смешанное соединение, представляющее собой комбинацию параллельного и последовательного вариантов.

На представленной схеме параллельно соединяются резисторы R2 и R3. Последовательное соединение включает в себя резистор R1, комбинацию R2 и R3 и резистор R4. Для того чтобы рассчитать сопротивление такого соединения, вся цепь разбивается на несколько простейших участков. После этого значения сопротивлений суммируются и получается общий результат.

Полупроводники

Стандартный полупроводниковый диод состоит из двух выводов и одного выпрямляющего электрического перехода. Все элементы системы объединяются в общем корпусе из керамики, стекла, металла или пластмассы. Одна часть кристалла называется эмиттером, в связи с высокой концентрацией примесей, а другая часть, с низкой концентрацией, именуется базой. Маркировка полупроводников на схемах отражает их конструктивные особенности и технические характеристики.

Для изготовления полупроводников используется германий или кремний. В первом случае удается добиться более высокого коэффициента передачи. Элементы из германия отличаются повышенной проводимостью, для которой достаточно даже невысокого напряжения.

В зависимости от конструкции, полупроводники могут быть точечными или плоскостными, а по технологическим признакам они бывают выпрямительными, импульсными или универсальными.

Конденсаторы

Конденсатор представляет собой систему, включающую два и более электродов, выполненных в виде пластин - обкладок. Они разделяются диэлектриком, который значительно тоньше, чем обкладки конденсатора. Все устройство имеет взаимную емкость и обладает способностью к сохранению электрического заряда. На простейшей схеме конденсатор представлен в виде двух параллельных металлических пластин, разделенных каким-либо диэлектрическим материалом.

На принципиальной схеме рядом с изображением конденсатора указывается его номинальная емкость в микрофарадах (мкФ) или пикофарадах (пФ). При обозначении электролитических и высоковольтных конденсаторов, после номинальной емкости указывается значение максимального рабочего напряжения, измеряемого в вольтах (В) или киловольтах (кВ).

Переменные конденсаторы

Для обозначения конденсаторов с переменной емкостью используются два параллельных отрезка, которые пересекает наклонная стрелка. Подвижные пластины, подключаемые в определенной точке схемы, изображаются в виде короткой дуги. Возле нее проставляется обозначение минимальной и максимальной емкости. Блок конденсаторов, состоящий из нескольких секций, объединяется с помощью штриховой линии, пересекающей знаки регулировки (стрелки).

Обозначение подстроечного конденсатора включает в себя наклонную линию со штрихом на конце вместо стрелки. Ротор отображается в виде короткой дуги. Другие элементы - термоконденсаторы обозначаются буквами СК. В его графическом изображении возле знака нелинейной регулировки проставляется температурный символ.

Постоянные конденсаторы

Широко используются графические обозначения конденсаторов с постоянной емкостью. Они изображаются в виде двух параллельных отрезков и выводов из середины каждого из них. Возле значка проставляется буква С, после нее - порядковый номер элемента и с небольшим интервалом - числовое обозначение номинальной емкости.

При использовании в схеме конденсатора с , вместо его порядкового номера наносится звездочка. Значение номинального напряжения указывается лишь для цепей с высоким напряжением. Это касается всех конденсаторов, кроме электролитических. Цифровой символ напряжения проставляется после обозначения емкости.

Соединение многих электролитических конденсаторов требует соблюдения полярности. На схемах для обозначения положительной обкладки используется значок «+» либо узкий прямоугольник. При отсутствии полярности узкими прямоугольниками помечаются обе обкладки.

Диоды и стабилитроны

Диоды относятся к простейшим полупроводниковым приборам, функционирующим на основе электронно-дырочного перехода, известного как p-n-переход. Свойство односторонней проводимости наглядно передается на графических обозначениях. Стандартный диод изображается в виде треугольника, символизирующего анод. Вершина треугольника указывает направление проводимости и упирается в поперечную черту, обозначающую катод. Все изображение пересекается по центру линией электрической цепи.

Для используется буквенное обозначение VD. Оно отображает не только отдельные элементы, но и целые группы, например, . Тип того или иного диода указывается возле его позиционного обозначения.

Базовый символ применяется и для обозначения стабилитронов, представляющих собой полупроводниковые диоды с особыми свойствами. В катоде присутствует короткий штрих, направленный в сторону треугольника, символизирующего анод. Данный штрих располагается неизменно, независимо от положения значка стабилитрона на принципиальной схеме.

Транзисторы

У большинства радиоэлектронных компонентов имеется лишь два вывода. Однако такие элементы как транзисторы оборудованы тремя выводами. Их конструкции отличаются разнообразными типами, формами и размерами. Общие принципы работы у них одинаковые, а небольшие отличия связаны с техническими характеристиками конкретного элемента.

Транзисторы используются преимущественно в качестве электронных коммутаторов для включения и выключения различных устройств. Основное удобство таких приборов заключается в возможности коммутировать большое напряжение с помощью источника малого напряжения.

По своей сути каждый транзистор является полупроводниковым прибором, с помощью которого генерируются, усиливаются и преобразуются электрические колебания. Наибольшее распространение получили биполярные транзисторы с одинаковой электропроводностью эмиттера и коллектора.

На схемах они обозначаются буквенным кодом VT. Графическое изображение представляет собой короткую черточку, от середины которой отходит линия. Данный символ обозначает базу. К ее краям проводятся две наклонные линии под углом 60 0 , отображающие эмиттер и коллектор.

Электропроводность базы зависит от направления стрелки эмиттера. Если она направлена в сторону базы, то электропроводность эмиттера - р, а у базы - n. При направлении стрелки в противоположную сторону, эмиттер и база меняют электропроводность на противоположное значение. Знание электропроводности необходимо для правильного подключения транзистора к источнику питания.

Для того чтобы обозначение на схемах радиодеталей транзистора было более наглядным, оно помещается в кружок, означающий корпус. В некоторых случаях выполняется соединение металлического корпуса с одним из выводов элемента. Такое место на схеме отображается в виде точки, проставляемой там, где вывод пересекается с символом корпуса. Если же на корпусе имеется отдельный вывод, то линия, обозначающая вывод, может подсоединяться к кружку без точки. Возле позиционного обозначения транзистора указывается его тип, что позволяет существенно повысить информативность схемы.

Буквенные обозначение на схемах радиодеталей

Основное обозначение

Наименование элемента

Дополнительное обозначение

Вид устройства

Устройство

Регулятор тока

Блок реле

Устройство

Преобразователи

Громкоговоритель

Датчик тепловой

Фотоэлемент

Микрофон

Звукосниматель

Конденсаторы

Батарея конденсаторов силовая

Блок конденсаторов зарядный

Интегральные схемы, микросборки

ИС аналоговая

ИС цифровая, логический элемент

Элементы разные

Теплоэлектронагреватель

Лампа осветительная

Разрядники, предохранители, устройства защитные

Дискретный элемент защиты по току мгновенного действия

То же, по току инерционного действия

Предохранитель плавкий

Разрядник

Генераторы, источники питания

Батарея аккумуляторов

Синхронный компенсатор

Возбудитель генератора

Устройства индикационные и сигнальные

Прибор звуковой сигнализации

Индикатор

Прибор световой сигнализации

Табло сигнальное

Лампа сигнальная с зеленой линзой

Лампа сигнальная с красной линзой

Лампа сигнальная с белой линзой

Индикаторы ионные и полупроводниковые

Реле, контакторы, пускатели

Реле токовое

Реле указательное

Реле электротепловое

Контактор, магнитный пускатель

Реле времени

Реле напряжения

Реле команды включения

Реле команды отключения

Реле промежуточное

Катушки индуктивности, дроссели

Дроссель люминесцентного освещения

Измеритель времени действия, часы

Вольтметр

Ваттметр

Выключатели и разъединители силовые

Выключатель автоматический

Резисторы

Терморезистор

Потенциометр

Шунт измерительный

Варистор

Устройство коммутации в цепях управления, сигнализации и измерительных цепях

Выключатель или переключатель

Выключатель кнопочный

Выключатель автоматический

Автотрансформаторы

Трансформатор тока

Трансформаторы напряжения

Преобразователи

Модулятор

Демодулятор

Блок питания

Преобразователь частоты

Приборы электровакуумные и полупроводниковые

Диод, стабилитрон

Прибор электровакуумный

Транзистор

Тиристор

Соединители контактные

Токосъемник

Соединитель высокочастотный

Устройства механические с электромагнитным приводом

Электромагнит

Замок электромагнитный

gastroguru © 2017