Применение навигационных систем глонасс gps. Система спутниковой навигации GPS – принцип, схема, применение. Принцип работы GPS

Спутниковая навигация GPS давно уже является стандартом для создания систем позиционирования и активно применяется в различных трекерах и навигаторах. В проектах Arduino GPS интегрируется с помощью различных модулей, не требующих знания теоретических основ. Но настоящему инженеру должно быть интересно разобраться со принципом и схемой работы GPS, чтобы лучше понимать возможности и ограничения этой технологии.

Схема работы GPS

GPS – это спутниковая навигационная система, разработанная Министерством обороны США, которая определяет точные координаты и время. Работает в любой точке Земли в любых погодных условиях. GPS состоит из трех частей – спутников, станций на Земле и приемников сигнала.

Идея создания спутниковой навигационной системы зародилась еще в 50-е годы прошлого столетия. Американская группа ученых, наблюдающая за запуском советских спутников, заметила, что при приближении спутника частота сигнала увеличивается и уменьшается при его отдалении. Это позволило понять, что возможно измерить положение и скорость спутника, зная свои координаты на Земле, и наоборот. Огромную роль в развитии навигационной системы сыграл запуск спутников на низкую околоземную орбиту. А в 1973 году была создана программа «DNSS» («NavStar»), по этой программе спутники запускались на среднюю околоземную орбиту. Название GPS программа получила в том же 1973 году.

Система GPS на данный момент используется не только в военной области, но и в гражданских целях. Сфер применения GPS много:

  • Мобильная связь;
  • Тектоника плит – происходит слежение за колебаниями плит;
  • Определение сейсмической активности;
  • Спутниковое отслеживание транспорта – можно проводить мониторинг за положением, скоростью транспорта и контролировать их движение;
  • Геодезия – определение точных границ земельных участков;
  • Картография;
  • Навигация;
  • Игры, геотегинт и прочие развлекательные области.

Важнейшим недостатком системы можно считать невозможность получения сигнала при определенных условиях. Рабочие частоты GPS лежат в дециметровом диапазоне волн. Это приводит к тому, что уровень сигнала может снизиться из-за высокой облачности, плотной листвы деревьев. Радиоисточники, глушилки, а в редких случаях даже магнитные бури также могут мешать нормальной передаче сигнала. Точность определения данных будет ухудшаться в приполярных районах, так как спутники невысоко поднимаются над Землей.

Навигация без GPS

Поправки в полученные уравнения вносит расхождение между расчетным и фактическим положением спутника. Погрешность, которая возникает в результате этого, называется эфемеридной и составляет от 1 до 5 метров. Также свой вклад вносят интерференция, атмосферное давление, влажность, температура, влияние ионосферы и атмосферы. Суммарно совокупность всех ошибок может довести погрешность до 100 метров. Некоторые ошибки можно устранить математически.

Чтобы уменьшить все погрешности, используют дифференциальный режим GPS. В нем приемник получает по радиоканалу все необходимые поправки к координатам от базовой станции. Итоговая точность измерения достигает 1-5 метров. При дифференциальном режиме существует 2 метода корректировки полученных данных – это коррекция самих координат и коррекция навигационных параметров. Первый метод использовать неудобно, так как все пользователи должны работать по одним и тем же спутникам. Во втором случае значительно увеличивается сложность самой аппаратуры для определения местоположения.

Существует новый класс систем, который увеличивает точность измерения до 1 см. Огромное влияние на точность оказывает угол между направлениями на спутники. При большом угле местоположение будет определяться с большей точностью.

Точность измерения может быть искусственно снижена Министерством обороны США. Для этого на устройствах навигации устанавливается специальный режим S/A – ограниченный доступ. Режим разработан в военных целях, чтобы не дать противнику преимущества в определении точных координат. С мая 2000 года режим ограниченного доступа был отменен.

Все источники ошибок можно разделить на несколько групп:

  • Погрешность в вычислении орбит;
  • Ошибки, связанные с приемником;
  • Ошибки, связанные с многократным отражением сигнала от препятствий;
  • Ионосфера, тропосферные задержки сигнала;
  • Геометрия расположения спутников.

Основные характеристики

В систему GPS входит 24 искусственных спутника Земли, сеть наземных станций слежения и навигационные приемники. Станции наблюдения требуются для определения и контроля параметров орбит, вычисления баллистических характеристик, регулировка отклонения от траекторий движения, контроль аппаратуры на бору космических аппаратов.

Характеристики навигационных систем GPS :

  • Количество спутников – 26, 21 основной, 5 запасных;
  • Количество орбитальных плоскостей – 6;
  • Высота орбиты – 20000 км;
  • Срок эксплуатации спутников – 7,5 лет;
  • Рабочие частоты – L1=1575,42 МГц; L2=12275,6МГц, мощность 50 Вт и 8 Вт соответственно;
  • Надежность навигационного определения – 95%.

Навигационные приемники бывают нескольких типов – портативные, стационарные и авиационные. Приемники также характеризуются рядом параметров:

  • Количество каналов – в современных приемников используется от 12 до 20 каналов;
  • Тип антенны;
  • Наличие картографической поддержки;
  • Тип дисплея;
  • Дополнительные функции;
  • Различные технические характеристики – материалы, прочность, защита от влаги, чувствительность, объем памяти и другие.

Принцип действия самого навигатора – в первую очередь устройство пытается связаться с навигационным спутником. Как только связь будет установлена, происходит передача альманаха, то есть информации об орбитах спутников, находящихся в рамках одной навигационной системы. Связи с одним только спутником недостаточно для получения точного местоположения, поэтому оставшиеся спутники передают навигатору свои эфемериды, необходимые для определения отклонений, коэффициентов возмущения и других параметров.

Холодный, теплый и горячий старт GPS навигатора

Включив навигатор впервые или после долгого перерыва, начинается долгое ожидание для получения данных. Долгое время ожидания связано с тем, что в памяти навигатора отсутствуют либо устарели альманах и эфемериды, поэтому устройство должно выполнить ряд действий по получению или обновлению данных. Время ожидания, или так называемое время холодного старта, зависит от различных показателей – качество приемника, состояние атмосферы, шумы, количество спутников в зоне видимости.

Чтобы начать свою работу, навигатор должен:

  • Найти спутник и установить с ним связь;
  • Получить альманах и сохранить его в памяти;
  • Получить эфемериды от спутника и сохранить их;
  • Найти еще три спутника и установить с ними связь, получить от них эфемериды;
  • Вычислить координаты при помощи эфемерид и местоположения спутников.

Только пройдя весь этот цикл, устройство начнет работать. Такой запуск и называется холодным стартом .

Горячий старт значительно отличается от холодного. В памяти навигатора уже имеется актуальный на данный момент альманах и эфемериды. Данные для альманаха действительны в течение 30 дней, эфемерид – в течение 30 минут. Из этого следует, что устройство выключалось на непродолжительное время. При горячем старте алгоритм будет проще – устройство устанавливает связь со спутником, при необходимости обновляет эфемериды и вычисляет местоположение.

Существует теплый старт – в этом случае альманах является актуальным, а эфемериды нужно обновить. Времени на это затрачивается немного больше, чем на горячий старт, но значительно меньше, чем на холодный.

Ограничения на покупку и использование самодельных модулей GPS

Российское законодательство требует от производителей уменьшать точность определения приемников. Работать с незагрубленной точностью может производиться только при наличии у пользователя специализированной лицензии.

Под запретом в Российской Федерации находятся специальные технические средства, предназначенные для негласного получения информации (СТС НПИ). К таковым относятся GPS трекеры, которые используются для негласного контроля над перемещением транспорта и прочих объектов. Основной признак незаконного технического средства – его скрытность. Поэтому перед приобретением устройства нужно внимательно изучить его характеристики, внешний вид, на наличие скрытых функций, а также просмотреть необходимые сертификаты соответствия.

Также важно, в каком виде продается устройство. В разобранном виде прибор может не относиться к СТС НПИ. Но при сборе готовое устройство уже может относиться к запрещенным.

Многие слышали такие слова, как GPS, ГЛОНАСС, GALILEO. Большинство знает, что эти понятия означают навигационные спутниковые системы (далее - НСС).


Аббревиатура GPS относится к американской НСС NAVSTAR. Эта система была разработана для военных целей, но была использована и для решения гражданских задач - определение местоположения для воздушных, сухопутных, морских пользователей.

В Советском союзе разработка собственной НСС ГЛОНАСС была скрыта за завесой секретности. После распада СССР работы в этом направлении длительное время не велись, поэтому NAVSTAR стала единственной глобальной системой, которая применялась для определения местоположения в любой точке планеты. Но только США доступно другое предназначение этой системы – наведения массового поражения на цель. И еще один не маловажный фактор – по решению военного ведомства США может быть отключен «гражданский» сигнал с американских навигационных спутников и пассажирские самолеты, корабли потеряют ориентацию. Эта монополия на управление спутниковой системой со стороны США не устраивает многие страны, включая Россию. Поэтому многие страны Россия, Индия, Япония, страны Европы, Китай, стали разрабатывать свои собственные НСС позиционирования. Все системы являются системами двойного назначения – они могут передавать два вида сигналов: для гражданских объектов и повышенной точности для военных потребителей. Основной принцип работы навигационной системы – полная автономность: система не принимает никаких сигналов от пользователей (беззапросная) и имеет высокую степень помехозащищенности и надежности.

Создание и эксплуатация любой НСС - очень сложный и дорогостоящий процесс, который из-за военной направленности должен принадлежать только государству страны-разработчика, поскольку является стратегическим видом вооружения. В случае вооруженного конфликта технология спутниковой навигации может быть использована не только для наведения оружия, но и для десантирования грузов, поддержки передвижения военных подразделений, осуществления диверсионных и разведывательных операций, что даст значительное преимущество стране, обладающей собственной технологией спутникового позиционирования.

Российская система ГЛОНАСС использует принцип определения позиции такой же, как у американской системы. В октябре 1982 года первый спутник ГЛОНАСС вышел на орбиту Земли, но в эксплуатацию система была введена только в 1993 году. Спутники российской системы беспрерывно излучают сигналы стандартной точности (СТ) - в диапазоне 1, 6 ГГц и высокой точности (ВТ) - в диапазоне 1,2 ГГц. Прием сигнала СТ доступен любому пользователю системы и обеспечивает определение горизонтальных и вертикальных координат, вектора скорости, а также времени. Например, для точного указания координат и времени необходимо принять и обработать информацию не менее, чем от четырех спутников системы ГЛОНАСС. Вся система ГЛОНАСС состоит из двадцати четырех спутников, находящихся на круговых орбитах на высоте около 19100 км. Период обращения каждого из них составляет 11 часов и 15 минут. Все спутники располагаются в трех орбитальных плоскостях - в каждой по 8 аппаратов. Конфигурация их размещения обеспечивает глобальное покрытие навигационным полем не только поверхность земли, но и околоземное пространство. В систему ГЛОНАСС входят Центр управления и сеть станций измерения и контроля, которые располагаются на всей территории России. Каждый потребитель, принимающий навигационный сигнал со спутников ГЛОГАСС, должен иметь навигационный приемник и аппаратуру обработки, позволяющей вычислить собственные координаты, время и скорость.

В настоящее время система ГЛОНАСС не обеспечивает 100% доступ к своим услугам для пользователей, но предполагает наличие трех спутников на видимом горизонте России, что по заявлению специалистов делает возможным вычислять пользователям свое местоположение. Сейчас на орбите Земли находятся спутники «ГЛОНАСС-М», но после 2015 года планируется их заменить на аппараты нового поколения - «ГЛОНАСС-К». Новый спутник будет иметь улучшенные показатели (увеличен гарантийный срок, появиться третья частота для гражданских потребителей и т.д.), аппарат будет в два раза легче - 850 кг вместо 1415 кг. Также для поддержания работоспособности всей системы потребуется только один групповой запуск «ГЛОНАСС-К» в год, что существенно снизит общие расходы. Для внедрения системы ГЛОНАСС и обеспечения ее финансирования, аппаратура этой навигационной системы устанавливается на всех вводимых в эксплуатацию транспортных средствах: самолетах, судах, наземном транспорте и т.д. Другое основное предназначение системы ГЛОНАСС - обеспечение национальной безопасности страны. Однако, по мнению экспертов, будущее российской навигационной системы не является безоблачным.

Система Galileo создается с целью обеспечения европейских потребителей самостоятельной навигационной системой - независимой, в первую очередь, от США. Финансовый источник этой программы составляет около 10 млрд. евро в год и финансируется на одну треть из бюджета, а на две трети из средств частных компаний. Система Galileo включает 30 спутников и наземные сегменты. Изначально Китай, наравне с другими 28 государствами присоединился к программе GALILEO. Россия вела переговоры по взаимодействию российской системы навигации с европейской GALILEO. Кроме европейских государств к программе GALILEO присоединились Аргентина, Малайзия, Австралия, Япония и Мексика. Планируется, что GALILEO будет передавать десять видов сигналов для предоставления следующих видов услуг: определение местоположения с точностью от 1 до 9 метров, обеспечение информацией служб спасения всех видов транспорта, предоставление услуг государственным службам, скорой помощи, пожарным, полиции, военным специалистам и службам, обеспечивающим жизнедеятельности населения. Еще одна немаловажная деталь - программа GALILEO обеспечит создание около 150 тыс. рабочих мест.

В 2006 году Индия также приняла решение о создании собственной навигационной системы IRNSS. Бюджет программы около 15 млрд. рупий. На геосинхронные орбиты планируется вывести семь спутников. Работы по развертыванию индийской системы ведет государственная компания ISRO. Все аппаратные средства системы будут разрабатываться только индийскими компаниями.

Китай, желающий занять ведущую позицию на геополитической карте мира, разработал собственную спутниковую навигационную систему «Бэйдоу» (Beidou). В сентябре 2012 года два спутника, входящие в эту систему, были успешно запущены с космодрома Сичан. Они пополнили список 15 космических аппаратов, выведенных китайскими специалистами на околоземную орбиту в рамках создания полноценной спутниковой навигационной системы.

Реализация программы началась китайскими разработчиками еще в 2000 году с запуска двух спутников. Уже в 2011 году на орбите находилось 11 спутников, и система вошла в стадию экспериментальной эксплуатации.

Развертывание собственной навигационной спутниковой системы позволит Китаю не зависеть от крупнейших мировых систем американской (GPS) и российской (ГЛОНАСС). Это повысит эффективность китайских отраслей экономики, особенно, таких, которые связаны с телекоммуникациями.

Планируется, что к 2020 году в китайской НСС будет задействовано около 35 спутников, и тогда система «Бэйдоу» сможет контролировать весь земной шар. Китайская НСС предусматривает следующие виды услуг: определение местоположения с точностью до 10 м, скорости до 0,2 м/с и времени до 50 нс. Особенный круг пользователей будет иметь доступ к более точным параметрам измерений. Китай готов на взаимодействие с другими странами по разработке и эксплуатации спутниковой навигации. Китайская система «Бэйдоу» полностью совместима с европейской Galileo, российской ГЛОНАСС и американской GPS.

«Бэйдоу» эффективно применяется при подготовке прогнозов погоды, предупреждении стихийных бедствий, в области транспорта наземного, воздушного и морского, а также геологоразведке.

В планах Китая постоянное усовершенствование своей спутниковой навигационной системы. Увеличение количества спутников позволит расширить зону обслуживания всего азиатско-тихоокеанского региона.

Использованы материалы:
http://www.odnako.org/blogs/show_20803/
http://www.masters.donntu.edu.ua/2004/ggeo/mikhedov/diss/libruary/mark.htm
http://overseer.com.ua/about_glonass.html
http://4pda.ru/2010/03/16/21851/
http://expert.com.ua/57706-galileo-%D0%BE%D0%B1%D0%BE%D0%B9%D0%B4%D1%91%D1%82%D1%81%D1%8F-%D0%B5%D0%B2%D1%80%D0%BE%D1%81%D0%BE%D1%8E%D0%B7%D1%83-%D0%BD%D0%B0%D0%BC%D0%BD%D0%BE%D0%B3%D0%BE-%D0%B4%D0%BE%D1%80%D0%BE%D0%B6%D0%B5.html

Спутниковые системы навигации – комплексные электронно-технические системы, состоящие из совокупности наземного (приемники) и космического оборудования (спутники). Они предназначены для определения местоположения (географических координат и высоты), а также параметров движения (скорости, направления движения и т. д.) для наземных, водных и воздушных объектов. Для краткого обозначения этих систем пользуются или аббревиатурой GNSS (от англ. Global Navigation Satellites System – глобальная навигационная спутниковая система) или NAVSTAR (от англ. NAVigation Satellites providing Time And Range – измерение времени и расстояния от навигационных спутников).

Принципы работы спутниковых систем навигации , если не обращать внимания на их техническую реализацию, достаточно просты. На околоземную орбиту запущены специальные навигационные спутники. Работа приемника GNSS заключается в том, чтобы найти четыре или более из этих спутников, выяснить расстояние до каждого и использовать эту информацию для вычисления собственного месторасположения.

Поскольку скорость распространения радиосигналов постоянна и равна скорости света, расстояние до спутников определяется по задержке времени приема сообщения GNSS-приемником относительно времени отправки сообщения с борта спутника. GNSS-приемник, зная взаимное расположение спутников, вычисляет свои координаты по законам геометрии, т. е. все работает по принципу простого школьного уравнения, когда, зная взаимное расположение трех точек, ищут положение четвертой, при условии, что известно расстояние от четвертой точки до каждой из трех.

Таким образом, для определения двух координат (широта и долгота) GNSS-приемнику нужно знать расстояние до трех спутников и время GNSS-системы. Для определения координат и высоты приемника, используются сигналы как минимум с четырех спутников.Для того чтобы произвести эти измерения, приемнику и спутнику необходимы часы, которые должны быть синхронизированы до наносекунды. Разработчики GNSS нашли умное и эффективное решение этой проблемы. Каждый спутник содержит дорогие атомные часы, но сам приемник использует обычные кварцевые, которые он постоянно переустанавливает по сигналам со спутников.

После того как приемник произведет расчеты, он сообщит Вам широту, долготу и высоту своего местонахождения. Для того чтобы сделать навигацию более удобной для пользователей, большинство приемников привязывают эти данные к картам, хранящимся в их памяти.

В настоящее время в мире реализовано несколько спутниковых систем навигации, которые работают по одним и тем же изложенным выше принципам.

GPS (от англ. Global Positioning System – глобальная система позиционирования)разработана, реализована и эксплуатируется Министерством обороны США. Первый тестовый спутник выведен на орбиту 14 июля 1974 г. В 1991 г. на орбиту выведено 24 спутника, которые обеспечили полное покрытие земного шара. Сейчас на орбите 30 спутников. Каждый из них вращается вокруг планеты на высоте примерно 20 000 км, делая два полных оборота каждый день. Орбиты расположены так, что в любое время и в любом месте на Земле есть по крайней мере четыре спутника, «видимых» в небе.

GPS была разработана Министерством обороны США для нужд военных. Ее можно использовать для точного наведения ракет на неподвижные и подвижные объекты в воздухе и на земле.

Система работает одновременно в двух режимах – военном и гражданском. Для военных армии США и их союзников, погрешность определения координат с помощью GNSS составляет несколько сантиметров. Для всех остальных точность составляет около 5 м, в зависимости от условий приема. К сожалению, точность навигации сильно зависит от открытости пространства, от высоты используемых спутников над горизонтом. Невысокое наклонение орбит GPS серьезно ухудшает точность в приполярных районах Земли, так как спутники GPS невысоко поднимаются над горизонтом.

ГЛОНАСС (ГЛОбальная НАвигационная Спутниковая Система) – советская и российская спутниковая система навигации, разработана по заказу Министерства обороны СССР. Основой системы являются 24 спутника, движущихся над поверхностью Земли в трех орбитальных плоскостях с наклоном 64,8° на высоте 19 100 км. В настоящее время развитием проекта ГЛОНАСС занимается Федеральное космическое агентство (Роскосмос) и ОАО «Российские космические системы».

Первый спутник ГЛОНАСС был выведен Советским Союзом на орбиту 12 октября 1982 г. 24 сентября 1993 г. система была официально принята в эксплуатацию с орбитальной группировкой из 12 спутников. В декабре 1995 г. спутниковая группировка была развернута до штатного состава – 24 спутника.

Галилео (Galileo ) – совместный проект спутниковой системы навигации Европейского союза и Европейского космического агентства. Система предназначена для решения навигационных задач для любых подвижных объектов с точностью менее 1 м. Ожидается, что «Галилео» войдет в строй в 2014–2016 гг., когда на орбиту будут выведены все 30 запла-нированных спутников (27 операционных и 3 резервных). Система Галилео не контролируется национальными военными ведомствами.

Бэйдоу – развертываемая в настоящее время Китаем подсистема GNSS предназначенная для использования только в этой стране. Особенность – небольшое количество спутников, находящихся на геостационарной орбите.

IRNSS – индийская навигационная спутниковая система, в состоянии разработки. Предполагается для использования только в этой стране. Первый спутник был запущен в 2008 г.

В ближайшей перспективе будут одновременно работать три глобальных навигационных спутниковых системы – GPS, ГЛОНАСС и Галилео. Одним из основных принципов развития этих систем является отсутствие прямой платы за пользование их услугами. Кроме этого, развитию систем способствует направленность на международное сотрудничество в области их совместимости и взаимодополняемости и как следствие – использование одной системы в комбинации с другими спутниковыми или наземными радионавигационными системами для повышения точности и надежности навигационных определений.

Несмотря на то, что изначально проекты GPS и ГЛОНАСС были направлены на военные цели, сегодня они все чаще используются в гражданских целях.

В настоящее время наиболее развернутой и развитой с точки зрения распространенности технических средств является система GPS. В связи этим ее название часто используется как нарицательное при любом разговоре о спутниковых навигационных системах.

Применение спутниковых навигационных систем. Независимо от класса и решаемых задач в основе любой навигационной системы лежит электронная картография. Спутниковые навигаторы не только сообщат координаты Вашего местоположения, но и свяжут его с электронной картой. Картографические GNSS системы можно использовать в любых приложениях требующих точной временной привязки и привязки положений с другой атрибутивной информацией.

Потребителям предлагаются различные устройства и программные продукты, позволяющие видеть свое местонахождение на электронной карте: имеющие возможность прокладывать маршруты с учетом дорожных знаков, разрешенных поворотов и даже пробок; искать на карте конкретные дома и улицы, достопримечательности, кафе, больницы, автозаправки и прочие объекты инфраструктуры. GNSS-приемники продают во многих магазинах, торгующих электроникой, их встраивают в мобильные телефоны, смартфоны, КПК.

Наиболее распространенными являются приемники GNSS для индивидуального использования водителями автомобильного транспорта. Они имеют размер карманного калькулятора с клавиатурой и жидкокристаллическим дисплеем. Приемник GNSS не только укажет Ваше место на карте, но также способен отслеживать по карте Ваши перемещения. Если Вы оставите приемник включенным, он может находиться в постоянной связи со спутниками GNSS, чтобы отслеживать изменение Вашего положения. С помощью этой информации и встроенных часов приемник может дать Вам следующие сведения:

· местонахождение;

· наиболее короткий и удобный путь до пункта назначения;

· как далеко Вы уже уехали;

· как долго Вы путешествуете;

· скорость движения (в настоящий момент, максимальная, минимальная, средняя);

· время в пути (прошедшее и сколько еще потребуется).

Автомобильные GNSS-приемники – это, по сути, электронные лоцманы, дающие указания водителю синтезированным голосом, заранее сообщая обо всех поворотах, стоянках и прочих особенностях данного маршрута. В большом городе иногда сложно сориентироваться даже тем, кто прожил там всю жизнь. Что уж говорить о приезжих. Да и за пределами города несложно потеряться. Так что GNSS-навигатор – очень полезная и иногда даже необходимая вещь. Особенно если речь идет о начинающем водителе или человеке, который первый раз оказался в незнакомом городе.

В последнее время получает широкое распространение весьма удачная интеграция GNSS, радиосвязи и компьютерной техники – диспетчерские навигационные системы, предназначенные для централизованного контроля за передвижением автомобилей. В этих системах каждый автомобиль оснащен GNSS-приемником и радиосвязным оборудованием для контакта с диспетчерским пунктом. На экране монитора диспетчера формируется электронная цифровая карта территории, которая обслуживается транспортными средствами. Закодированная информация о координатах и скорости движения автомобилей, получаемая по радиоканалу, позволяет отобразить их текущее положение на этой карте. Параллельно этой информации по радиолинии могут автоматически передаваться сведения от самых разных датчиков, установленных на автомобиле: например, о несанкционированном вскрытии контейнеров, о наличии топлива, об остановках, ДТП, авариях и т. п.

Такие диспетчерские GNSS-системы могут успешно использоваться в торговых и транспортных компаниях, а также в поисковых и аварийных службах, инкассации банков, в МВД и т. п. Элементы таких систем могут устанавливаться в автомобилях скрытно. В случае попытки угона устройство автоматически сообщит координаты автомобиля, по которым соответствующая служба сможет его найти.

Системы спутникового мониторинга транспорта решают следующие задачи.

1. Контроль за целевым использованием транспорта. Проверяется действительный маршрут, пройденный транспортным средством, точки остановок, скоростной режим, расход топлива, время работы механизмов.

2. Контроль соблюдения графика движения. На карте определяются контрольные зоны. Проверяется время пересечения границ зон.

3. Сбор статистки и оптимизация маршрутов. Проанализировав пройденные маршруты на предмет скоростного режима и расхода топлива, диспетчер может разработать новые, более эффективные.

4. Обеспечение безопасности. Знание местоположения позволяет быстро найти угнанное либо попавшее в беду транспортное средство. Автомобили специального назначения, такси могут оборудоваться скрытой кнопкой, нажатие на которую отсылает тревожный сигнал в диспетчерский центр.

5. Помощь водителю в выборе маршрута на местности. Зная местонахождение транспортного средства, диспетчер может посоветовать водителю маршрут движения в незнакомой местности.

Система спутникового мониторинга транспорта включает следующие компоненты:

· транспортное средство, оборудованное GPS- или ГЛОНАСС-контроллером или трекером, который получает данные от спутников и передает их на серверный центр мониторинга посредством GSM, CDMA, Wi-Fi, Bluetooth или реже космической и УКВ связи;

· серверный центр с программным обеспечением для приема, хранения, обработки и анализа данных;

· компьютер диспетчера, ведущего мониторинг автомобилей.

Большинство GNSS-контроллеров и трекеров имеют схожие функциональные возможности:

· вычисление собственное местоположение, скорость и направление движения на основании сигналов спутников систем глобального позиционирования GPS;

· подключение внешних датчиков через аналоговые или цифровые входы;

· считывание данных с бортового оборудования;

· хранение некоторого объема данных во внутренней памяти на период отсутствия связи;

· передача полученных данных на серверный центр, где происходит их обработка.

Для получения дополнительной информации на транспортное средство устанавливаются дополнительные датчики, подключаемые к GPS- или ГЛОНАСС-контроллеру, например:

· датчик расхода топлива;

· датчик нагрузки на оси транспортного средства;

· датчик уровня топлива в баке;

· датчик температуры в рефрижераторе;

· датчики, фиксирующие факт работы или простоя спецмеханизмов (поворот стрелы крана, работы бетоносмесителя), факт открывания двери или капота, факт наличия пассажира (такси).

Использование систем спутникового мониторинга повышает качество и эффективность работы корпоративного транспорта, и в среднем на 20–25 % снижают расходы на топливо и содержание автопарка. Примерами использования таких диспетчерских систем могут похвастаться уже десятки городов России.

29 января 2009 г. было объявлено, что первым городом страны, где общественный транспорт в массовом порядке оснащен системой спутникового мониторинга на базе ГЛОНАСС, стал Сочи. На тот момент ГЛОНАСС-оборудование было установлено на 250 сочинских автобусах.

С недавних пор за всеми передвижениями автомобилей скорой помощи в Благовещенске следят диспетчеры в специальном сервисе, который был создан для сокращения времени прибытия к больному. В оперативном отделе станции рабочие места оборудованы электронной картой Благовещенска, и теперь местонахождение бригад скорой помощи, их маршрут, параметры скорости и времени движения диспетчер без труда может отслеживать по монитору.

Пермское отделение Свердловской железной дороги начало подготовку к реализации пилотного проекта по внедрению спутниковой системы контроля ITARUS-АТС. Система призвана осуществлять контроль из центра оперативного управления за скоростью и местонахождением поездов. Кроме того, она проводит непрерывную диагностику подвижного состава, при необходимости автоматически отдает команды на экстренные остановки или временное ограничение скорости. Ожидается, что внедрение системы повысит пропускную способность линий и позволит сократить расходы на эксплуатацию и техническое обслуживание железнодорожной инфраструктуры. По итогам опытной эксплуатации в Пермском крае планируется распространить данную технологию на сеть российских железных дорог.

Развитие систем GNSS-диспетчеризации осуществляется в рамках постановления Правительства РФ от 03.08.1999 г. № 896 «Об использовании в Российской Федерации глобальных навигационных спутниковых систем на транспорте и в геодезии».

Рассмотрим другие сферы применения спутниковых навигационных систем.

Специалисты, работающие в области природных ресурсов – геологи, географы, лесники и биологи используют GNSS картографические системы для записи положений и дополнительной информации об объектах. Например, лесники в качестве дополнительной информации могут регистрировать возраст, состояние, количество и тип леса. Они могут также проводить съемку территорий, подлежащих вырубке или посадке. Биологи имеют возможность регистрировать ареалы расселения диких животных, маршруты их миграций, численность популяций и другую информацию.

GNSS оказывается крайне эффективным в городском хозяйстве при съемке канализационных, газовых и водных трубопроводов, а также электрических и телефонных линий. Такие объекты, как крышки колодцев и пожарные гидранты, картографируются как точки с соответствующей атрибутивной информацией. Кроме того, с помощью GNSS можно выполнять съемку земельных участков, участков проведения строительных работ, объектов улиц и заводов.

GNSS картографические системы помогают описывать особенности участков полей, находящихся в интенсивном сельскохозяйственном применении. Вы можете точно связать такие характеристики, как микроклимат, тип почвы, участки поврежденные насекомыми или болезнями, объем собираемой продукции и т. п., с их местоположением. Положение трактора может быть использовано совместно с данными о типе почвы для более экономного расхода удобрений или химических распылителей. Это напрямую снижает стоимость затрат на удобрения и уменьшает загрязнение природных водных источников этими веществами. Кроме того, GNSS можно использовать для картографирования местоположения колодцев и других источников воды; записи размеров озер и их состояния; регистрации ареалов распространения рыбы и диких животных; изменений береговой линии, полевых угодий и климатических зон.

Археологи и историки могут использовать картографические GNSS- системы для навигации и регистрации раскопок и исторических мест.

Навигационные возможности систем могут оказать неоценимую помощь в поиске и спасении людей, в работе милиции и пожарных при экстренном поиске определенного местоположения. Еще в 1990-х гг. появились первые сотовые телефоны с GNSS. В некоторых странах, например США, это используется для оперативного определения местонахождения человека, звонящего по телефону службы спасения. В России в 2010 г. начата реализация аналогичного проекта – Эра-ГЛОНАСС.


ВВЕДЕНИЕ.. 1

1. РЫНОК ИНФОРМАЦИОННЫХ ПРОДУКТОВ.. 1

1.1 ИНФОРМАЦИОННЫЕ РЕСУРСЫ 1

1.2. ИНФОРМАЦИОННЫЕ ПРОДУКТЫ И УСЛУГИ 3

1.3. РЫНОК ИНФОРМАЦИОННЫХ ПРОДУКТОВ И УСЛУГ 5

1.4. СТРУКТУРА ИНФОРМАЦИИ 9

3.2. Как соотносятся информационная технология и информационная система. 10

2. ОПРЕДЕЛЕНЕ И КЛАССИФИКАЦИЯ ИНФОРМАЦИОННЫХ СИСТЕМ... 11

2.1. ОПРЕДЕЛЕНИЕ ИНФОРМАЦИОННОЙ СИСТЕМЫ 11

2.2. КЛАССИФИКАЦИЯ ИНФОРМАЦИОННЫХ СИСТЕМ 15

2.2.1. По признаку структурированности задач. 15

2.2.2. По функциональному признаку и уровням управления. 17

2.2.3. Классификация по характеру обрабатываемой информации. 25

2.2.3. Классификация по целевым функциям. 25

3. Классификация по видам процессов управления. 26

4. Классификация по отраслевому и территориальному признаку. 28

2.2.3. Классификация по степени автоматизации. 28

По степени открытости. 29

По режиму работы.. 30

3. СТРУКТУРА АВТОМАТИЗИРОВАННЫХ ИНФОРМАЦИОННЫХ СИСТЕМ 30

3.1. Состав и назначение структурных элементов АИС. 30

3.2. Технологическое обеспечение АИС.. 33

4. СТАДИИ И ЭТАПЫ ПРОЕКТИРОВАНИЯ АИС И АИТ.. 37

4.1. Общие принципы проектирования. 37

4.5. План постановки задачи. 55

5. Автоматизированное рабочее место – средство автоматизации работы конечного пользователя. 58

6. РАБОТА С ЭЛЕКТРОННЫМИ ДОКУМЕНТАМИ.. 61

6.1. Электронизация делопроизводства. 62

6.2. Выбор программного обеспечения для работы с электронными документами 67

6.3. Классификаторы и кодировки в электронных документах. 80

6.4. Автоматизация идентификации объектов. Штрих-кодирование. 83

7. ИНФОРМАЦИОННО-КУММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ – ОСНОВА РЫНКА ЭЛЕКТРОННЫХ УСЛУГ. 88

7.1. Электронное правительство. 91

7.2. Финансовые услуги через Интернет. 98

7.3. Общественные информационно-коммуникационные интерактивные системы сервисов. 102

7.4. Спутниковые навигационные системы и их использование. 108

В этой статье мы расскажем про глобальные системы позиционирования, разработанные в США, России, ЕС и Китае; объясним, как поддержка технологий глобальной спутниковой навигации реализована в электронных устройствах, а также опишем ключевые и дополнительные функции современных навигационных приемников.

GPS

Система GPS (Global Positioning System) создавалась для применения в военных целях. Она начала работать в конце 80-х - начале 90-х годов, однако до 2000 года искусственные ограничения на определение местоположения существенно сдерживали ее возможности использования в гражданских целях.

После отмены ограничений на точность определения координат ошибка снизилась со 100 до 20 м (в последних поколениях GPS-приёмников при идеальных условиях ошибка не превышает 2 м). Такие условия позволили использовать систему для широкого круга общих и специальных задач:

  • Определение точного местоположения
  • Навигация, движение по маршруту с привязкой к карте на основании реального местоположения
  • Синхронизация времени

Орбиты спутников системы GPS. Пример видимости спутников из одной из точек на поверхности Земли. Visible sat - это число спутников, видимых над горизонтом наблюдателя в идеальных условиях (чистое поле).

ГЛОНАСС

Российский аналог GPS - ГЛОНАСС (глобальная навигационная спутниковая система) - была развёрнута в 1995 году, но в связи с недостаточным финансированием и малым сроком службы спутников она не получила широкого распространения. Вторым рождением системы можно считать 2001 год, когда была принята целевая программа ее развития, благодаря которой ГЛОНАСС возобновил полноценную работу в 2010 году.

Сегодня на орбите работают 24 спутника ГЛОНАСС, они охватывают навигационным сигналом весь земной шар.
Новейшие потребительские устройства используют GPS и ГЛОНАСС как взаимодополняющие системы, подключаясь к ближайшим найденным спутникам, это значительно увеличивает скорость и точность их работы.

Пример: aвтомобильное GPS/ГЛОНАСС-навигационно-связное устройство на базе ОС Android, разработанное командой Promwad по заказу российского конструкторского бюро. Реализована поддержка GSM/GPRS/3G. Устройство автоматически обновляет информацию о дорожной обстановке в режиме реального времени и предлагает водителю оптимальный маршрут с учётом загруженности дорог.

Сейчас на стадии разработки находятся еще две спутниковые системы: европейская Galileo и китайская Compass.

Galileo

Галилео - совместный проект Европейского союза и Европейского космического агентства, анонсированный в 2002 году. Изначально рассчитывали, что уже в 2010 году в рамках этой системы на средней околоземной орбите будут работать 30 спутников. Но этот план не был реализован. Сейчас предположительной датой начала эксплуатации Galileo считается 2014 год. Однако ожидается, что полнофункциональное использование системы начнется не ранее 2020 года.

Compass

Это следующая ступень развития китайской региональной навигационной системы Beidou, которая была введена в эксплуатацию после запуска 10 спутников в конце 2011 года. Сейчас она обеспечивает покрытие в границах Азии и Тихоокеанского региона, но, как ожидается, к 2020 году система станет глобальной.


Сравнение орбит спутниковых навигационных систем GPS, ГЛОНАСС, Galileo и Compass (средняя околоземная орбита - MEO) с орбитами Международной космической станции (МКС), телескопа Хаббл и серии спутников Иридиум (Iridium) на низкой орбите, а также геостационарной орбиты и номинального размера Земли.

Поддержка ГНСС

Поддержка технологи глобальных навигационных спутниковых систем (ГНСС) в электронных устройствах реализуется на базе навигационных приемников, которые могут быть выполнены в различных вариантах:
  • Smart Antenna - модуль, состоящий из керамической антенны и навигационного приемника. Преимущества: компактность, не требует согласования, удешевляет разработку за счет сокращения сроков.
  • MCM (Multi Chip Module) - чип, включающий все компоненты навигационного приемника.
  • OEM - экранированная плата, включающая ВЧ интерфейсный процессор и процессор частот основной полосы (RF-frontend + baseband), SAW-фильтры и обвязку. Это наиболее популярное решение на данный момент.
Навигационный модуль подключается к микроконтроллеру или системе на кристалле по интерфейсу UART/RS-232 или USB.

Ключевые параметры навигационных приемников

Прежде чем навигационный приемник сможет выдавать информацию о местоположении, он должен обладать тремя наборами данных:
  1. Сигналы от спутников
  2. Альманах - информация о приблизительных параметрах орбит всех спутников, а также данные для калибровки часов и характеристики ионосферы
  3. Эфемериды - точные параметров орбит и часов каждого спутника
Характеристика TTFF показывает сколько времени требуется приемнику на поиск сигналов от спутников и определение местоположения. Если приёмник новый, или был выключен на протяжении длительного периода, или был перевезен на большое расстояние с момента последнего включения, время до получения набора необходимых данных и определения места увеличивается.

Производители приемников используют различные методы уменьшения TTFF, включая скачивание и сохранения альманаха и эфемерид по беспроводным сетям передачи данных (т.н. метод Assisted GPS или A-GPS), это быстрее чем извлечение этих данных из сигналов ГНСС.

Холодный старт описывает ситуацию, когда приемнику нужно получение всей информации для определения места. Это может занять до 12 минут.

Теплый старт описывает ситуацию, когда у приемника есть почти вся необходимая информация в памяти, и он определит место в течении минуты.

Одним из ключевых параметров навигационных модулей в мобильных устройствах является энергопотребление. В зависимости от режима работы модуль потребляет различное количество энергии. Фаза поиска спутников (TTFF) характеризуется большим, а слежение меньшим энергопотреблением. Также производители реализуют различные схемы уменьшения энергопотребления, например, путем периодического перевода модуля в режим сна.

Как правило, все модули выдают данные по текстовому протоколу NMEA-0183 , но кроме указанного текстового протокола каждый производитель имеет свой собственный двоичный протокол (Binary), который позволяет изменять конфигурацию модуля под конкретное использование либо получать доступ к дополнительному функционалу, а также доступ к сырым измерениям. Двоичный протокол удобен для использования на микроконтроллерах, т.к. при этом нет необходимости выполнять преобразование из текста в двоичные данные, тем самым экономя программную память путем исключения библиотеки работы со строками и времени на преобразование.

Стандарт NMEA-2000 - это развитие протокола NMEA-0183. В качестве физического уровня в NMEA-2000 используется CAN-шина, которая была выбрана в виду большей защищенности по сравнению с RS-232. С точки зрения протокола передачи данныхNMEA-2000 существенно отличается от своего предшественника, т.к. использует двоичный протокол, базирующийся на стандарте SAE J1939.

Частота обновления данных о местоположении и скорости всех модулей составляет 1 Гц, но при необходимости ее можно поднять до 5 или 10 Гц.

В зависимости от области применения модуль можно сконфигурировать под определенные динамические характеристики , которые он должен отслеживать (например, максимальное ускорение объекта). Это позволяет использовать оптимальный алгоритм и улучшать качество измерений.

Для выполнения навигационной задачи модуль должен одновременно принимать сигналы от нескольких спутников, т.е. иметь несколько приемных каналов . На сегодняшний день это число лежит в диапазоне от 12 до 88.

Точность определения местоположения по GPS составляет в среднем 15 м, она обусловлена используемым неточным сигналом, влиянием атмосферы на распространение радиосигнала, качеством кварцевых генераторов в приемниках и пр. Но с помощью корректирующих методов возможно улучшить точность определения местоположения. Эта технология называется Differential GPS . Существует два метода коррекции: наземный и спутниковый DGPS.

В наземных методах коррекции наземные станции дифференциальных поправок постоянно сверяют свое заведомо известное местоположение и сигналы от навигационных спутников. На базе этой информации вычисляются корректирующие величины, которые могут быть переданы с помощью УКВ- или ДВ-передатчика на мобильные DGPS-приемники в формате RTCM . На основании полученной информации потребитель может корректировать процесс определения собственного местоположения. Точность этого метода составляет 1-3 метра и зависит от расстояния до передатчика корректирующей информации и качества сигнала.

Спутниковые методы, такие как система WAAS (Wide Area Augmentation System), доступная в Северной Америке, и система EGNOS (European Geostationary Navigation Overlay System), доступная в Европе, шлют корректирующие данные с геостационарных спутников, таким образом достигается бо льшая область приема, чем при наземных методах.

Спутниковые системы дифференциальной коррекции (SBAS - Space Based Augmentation Systems) позволяют улучшить точность, надежность и доступность навигационной системы за счет интеграции внешних данных в процессе расчета


Демонстрация принципа работы системы WAAS (Wide Area Augmentation System) на территории США

Одним из основных параметров, влияющих на точность определения местоположения и стабильность приема является чувствительность . Она, как правило, определяется качеством малошумящего усилителя на входе приемника и сложностью реализованных алгоритмов цифровой обработки. Типовые значения современных приемников лежат в диапазоне 143 дБм для поиска и 160 дБм для слежения.

Кроме определения местоположения ГНСС предоставляют информацию о точном времени. Как правило, все приемники имеют выход PPS (pulse per second, импульсов в секунду) - секундная метка (1 Гц), которая точно синхронизирована с временной шкалой UTC.

Дополнительные функции навигационных устройств

Счисление пути . На основе информации о направлении движения и пройденном пути (предоставляется дополнительными датчиками) приемник может рассчитывать свои координаты при отсутствии сигналов от спутников (например, в туннелях, на подземных стоянках и в плотной городской застройке).

Некоторые модули имеют возможность напрямую подключать флэш-память (например, по SPI) к модулю для записи трека c необходимой периодичностью. Эта функция позволяет отказаться от использования отдельного микроконтроллера, либо она может быть полезной для минимизации энергопотребления (т.е. система на кристалле может находиться в состоянии сна).

На этом поверхностный обзор технологий глобальной спутниковой навигации завершен. Спасибо за внимание. Примеры реализованных проектов на базе этих ГЛОНАСС и GPS можно посмотреть на странице

Сегодня мы поговорим о том, что такое GPS, как работает эта система. Уделим внимание развитию данной технологии, ее функциональным особенностям. Также обсудим, какую роль в работе системы играют интерактивные карты.

История появления GPS

История появления глобальной системы позиционирования, или определения координат, началась в США еще в далеких 50-х годах при запуске первого советского спутника в космос. Бригада американских ученых, следивших за запуском, заметила, что при отдалении спутник равномерно меняет свою частоту сигнала. После глубокого анализа данных они пришли к выводу, что при помощи спутника, если говорить более подробно, то его расположения и издаваемого сигнала, можно точно определить нахождение и скорость передвижения человека на земле, как и наоборот, скорость и нахождение спутника на орбите при определении точных координат человека. К концу семидесятых годов Минобороны США запустило систему GPS в своих целях, а еще через несколько лет она стала доступна для гражданского применения. Система GPS как работает сейчас? Точно так, как и работала в то время, по тем же принципам и основам.

Сеть спутников

Более двадцати четырех спутников, находящихся на околоземной орбите, передают радиосигналы привязки. Количество спутников варьируется, но на орбите всегда находится нужное их число для обеспечения бесперебойной работы, плюс некоторые из них есть в запасе, чтобы в случае поломки первых принять их функции на себя. Так как срок службы каждого из них приблизительно около 10 лет, производится запуск новых, модернизированных версий. Вращение спутников происходит по шести орбитам вокруг Земли на высоте менее 20 тысяч км, оно образует взаимосвязанную сеть, которой управляют станции GPS. Находятся последние на тропических островах и связаны с основным координационным центром в США.

Как работает GPS-навигатор?

Благодаря этой сети можно узнать местонахождение при помощи вычисления задержки прохождения сигнала от спутников, и при помощи этой информации определить координаты. Система GPS как работает сейчас? Как и любая сеть навигации в пространстве - она совершенно бесплатна. Она с высокой эффективностью работает при любых погодных условиях и в любое время суток. Единственная покупка, которая должна у вас быть, это сам GPS-навигатор или устройство, которое поддерживает функции GPS. Собственно, принцип работы навигатора строится на давно используемой простой схеме навигации: если точно знаете место, где находится маркерный объект, наиболее подходящий на роль ориентира, и расстояние от него до вас, нарисуйте окружность, на которой точкой обозначьте ваше месторасположение. Если радиус окружности велик, то замените ее прямой линией. Проведите несколько таких полос от возможного вашего расположения в сторону маркеров, точка пересечения прямых обозначит ваши координаты на карте. Вышеупомянутые спутники в таком случае как раз и играют роль этих маркерных объектов с расстоянием от вашего месторасположения около 18 тысяч км. Хотя вращение их по орбите и происходит с огромной скоростью, местоположение постоянно отслеживается. В каждом навигаторе установлен GPS-приемник, который запрограммирован на нужную частоту и находится в прямом взаимодействии со спутником. В каждом радиосигнале содержится определенное количество закодированной информации, которая включает в себя ведомости о техническом состоянии спутника, местонахождении его на орбите Земли и часовом поясе (точное время). К слову, информация о точном времени и является наиболее нужной для получения данных о ваших координатах: происходящее вычисление отрезка времени между отдачей и приемом радиосигнала умножается на скорость самой радиоволны и путем недолговременных подсчетов рассчитывается расстояние между вашим навигационным прибором и спутником на орбите.


Сложности синхронизации

Исходя из этого принципа навигации, можно предположить, что для точного определения ваших координат могут понадобиться всего два спутника, на основе сигналов которых легко будет найти точку пересечения, и в итоге — место, где вы находитесь. Но, к сожалению, технические причины требуют применения еще одного спутника как маркера. Главная проблема заключается в часах GPS-приемника, что не позволяет провести достаточную синхронизацию со спутниками. Причиной этому является разница в отображении времени (на вашем навигаторе и в космосе). На спутниках присутствуют дорогие высококачественные часы на атомной основе, что позволяет им вести подсчет времени с предельной точностью, тогда как на обычных приемниках такие хронометры применить попросту невозможно, так как габариты, стоимость, сложность в эксплуатации не позволили бы применять их повсюду. Даже малая ошибка в 0.001 секунды может сместить координаты более чем на 200 км в сторону!


Третий маркер

Так что разработчики решили оставить обычную технологию кварцевых часов в GPS-навигаторах и пойти по другому пути, если говорить точнее - использовать вместо двух ориентиров-спутников — три, соответственно, столько же линий для последующего пересечения. Решение проблемы строится на гениально простом выходе: при пересечении всех линий с трех обозначенных маркеров, даже при возможных неточностях, создается зона в форме треугольника, за центр которого берется его середина - ваше расположение. Также это позволяет выявить отличие во времени приемника и всех трех спутников (для которых отличие будет одинаковым), что позволяет скорректировать пересечение линий ровно в центре, проще говоря — это определяет ваши координаты GPS.


Одна частота

Следует также заметить, что все спутники посылают на ваше устройство информацию на одной частоте, и это довольно необычно. Как работает GPS-навигатор и как воспринимает всю информацию корректно, если все спутники беспрерывно и одновременно посылают на него информацию? Все довольно-таки просто. Передатчики на спутнике для определения себя посылают в радиосигнале еще и стандартную информацию, в которой находится зашифрованный код. Он сообщает максимум характеристик спутника и заносится в базу данных вашего устройства, что потом позволяет сверять данные со спутника с базой данных навигатора. Даже при большом количестве спутников в зоне досягаемости очень быстро и легко их можно определить. Все это упрощает всю схему и позволяет использовать в GPS-навигаторах меньшие по размеру и более слабые антенны приема, что удешевляет и уменьшает дизайн и габариты устройств.

GPS-карты

Карты GPS загружаются на ваше устройство отдельно, так как вы сами влияете на выбор местности, по которой хотите передвигаться. Система всего лишь устанавливает ваши координаты на планете, а уже функцией карт является воссоздание на экране графической версии, на которую наносятся координаты, что и позволяет вам ориентироваться на местности. GPS как работает в данном случае? Бесплатно, это так и продолжает оставаться в таком статусе, карты в некоторых интернет-магазинах (и не только) все же платные. Зачастую для прибора с GPS-навигатором создаются отдельные приложения для работы с картами: как платные, так и бесплатные. Разновидность карт приятно удивляет и позволяет настроить дорогу из точки A в точку Б максимально информативно и со всеми удобствами: какие достопримечательности вы будете проезжать, кратчайший путь до пункта назначения, голосовой помощник, указывающий направление и другие.


Дополнительное GPS-оборудование

Применяется система GPS не только для указания вам нужного пути. Она позволяет производить слежку за объектом, на котором может находиться так называемый маячок, или GPS-трекер. Состоит он из самого приемника сигналов и передатчика на основе gsm, 3gp или иных протоколов связи для передачи информации о расположении объекта в сервисные центры, осуществляющие контроль. Применяются они во многих отраслях: охранной, медицинской, страховой, транспортной и многих других. Также существуют автомобильные трекеры, которые подключаются исключительно к автомобилю.


Путешествия без проблем

С каждым днем значения карты и бессменного компаса уходят все дальше в прошлое. Современные технологии позволяют человеку проложить дорогу для своего странствия с минимальными потерями времени, усилий и средств, при этом увидеть наиболее захватывающие и интересные места. То, что было фантастикой около столетия назад, сегодня стало реальностью, и воспользоваться этим может практически каждый: от военных, моряков и пилотов самолетов до туристов и курьеров. Сейчас большую популярность набирает и использование этих систем для коммерческой, развлекательной, рекламной отраслей, где каждый предприниматель может указать себя на глобальной карте мира, и его будет совсем нетрудно найти. Надеемся, что эта статья помогла всем, кто интересуется тем, GPS - как работает, по какому принципу происходит определение координат, какие его сильные и слабые стороны.

gastroguru © 2017